Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Lab Chip ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623757

RESUMO

The diverse commensal microbiome of the human intestine has been considered to play a central role in depression. However, no host-microbiota co-culture system has been developed for depression, which hinders the controlled study of the interaction between depression and gut microbiota. We designed and manufactured a microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression (depression-on-gut-chip, DoGC), which enables the extended co-culture of viable aerobic human intestinal epithelial cells and anaerobic gut microbiota, and allows the direct study of interactions between human gut microbiota and depression. We introduced representative gut microbiota from individuals with depression into our constructed DoGC model, successfully recapitulating the gut microbiota structure of depressed patients. This further led to the manifestation of physiological characteristics resembling depression, such as reduced gut barrier function, chronic low-grade inflammatory responses and decreased neurotransmitter 5-HT levels. Metabolome analysis of substances in the DoGC revealed a significant increase in lipopolysaccharides and tyrosine, while hyodeoxycholic acid, L-proline and L-threonine were significantly reduced, indicating the occurrence of depression. The proposed DoGC can serve as an effective platform for studying the gut microbiota of patients with depression, providing important cues for their roles in the pathology of this condition and acting as a powerful tool for personalized medicine.

2.
Mol Biotechnol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520499

RESUMO

Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.

3.
Heliyon ; 10(6): e28011, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524602

RESUMO

Neurosyphilis is a serious global health issue and a big challenge in developing countries, related risk factors should be taken seriously. Although there are a certain number of studies describing the clinical and laboratory features and risk factors for symptomatic neurosyphilis (SNS), but some risk factors are still controversial. The aim of this research is to investigate the association between asymptomatic neurosyphilis (ANS) and symptomatic neurosyphilis (SNS) and identify risk factors for SNS. This was a single-center retrospective study in a tertiary hospital in Hangzhou, China. The clinical and laboratory features of neurosyphilis patients from January 1, 2011 to July 31, 2020 were retrospectively reviewed. After detailed assessments based on diagnostic criteria, 402 patients with neurosyphilis were enrolled in this study. There were 299 male and 103 female patients. The median age was 53.5 (45, 61) years. Multivariable logistic regression displayed that SNS were correlated with the following factors: male, without anti-syphilis treatment, high pretreatment serum RPR titer and positive CSF RPR. Our findings suggest a potential association between SNS and specific factors, including male gender, elevated pretreatment serum and CSF RPR titers. Moreover, our observations indicate that individuals without anti-syphilis treatment may be at a higher likelihood of manifesting the symptomatic form. This underscores the importance of considering gender, RPR titers, and treatment status as significant contributors to the risk profile for SNS.

4.
Nat Commun ; 15(1): 2058, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448474

RESUMO

Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Animais , Camundongos , Doença de Alzheimer/genética , Macrófagos , Colesterol , Lipídeos , Proteínas de Homeodomínio , Fatores de Transcrição Hélice-Alça-Hélice Básicos
5.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38350999

RESUMO

Genome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multielectrode arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 d of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-induced changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons.


Assuntos
Etanol , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Humanos , Masculino , Feminino , Estudo de Associação Genômica Ampla , Neurônios , Respiração
6.
Heliyon ; 10(3): e24855, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318018

RESUMO

Breast cancer is the most frequent form of cancer in women and the primary cause of cancer-related deaths globally. DNA methylation and demethylation are important processes in human tumorigenesis. Ten-eleven translocation 3 (TET3) is a DNA demethylase. Prior research has demonstrated that TET3 is highly expressed in various human malignant tumors. However, the exact function and mechanism of TET3 in breast cancer remain unclear. In this study, we investigated TET3 expression in breast cancer and its correlation with clinicopathological characteristics of breast cancer patients. The results presented that TET3 expression was significantly increased in breast cancer and associated with the PAM50 subtype. Subsequently, we performed receiver operating characteristic, survival, and Cox hazard regression analyses. These results suggest that TET3 expression is associated with a poor prognosis and may be an indirect independent prognostic indicator in breast cancer. We also established a protein-protein interaction (PPI) network of TET3 and executed enrichment analyses of TET3 co-expressed genes, revealing their primary association with the cell cycle. Moreover, we identified noncoding RNAs (ncRNAs) contributing to TET3 overexpression using expression, correlation, and survival analyses. We identified the LINC01521/hsa-miR-29a-3p axis as the primary TET3 upstream ncRNA-related pathway in breast cancer. Furthermore, TET3 expression was positively associated with immune cell infiltration, immune cell biomarkers, and eight immune checkpoint gene expressions in breast cancer. TET3 expression also correlated with patient responses to immunotherapy. Finally, we conducted subcellular localization and immunohistochemical staining analysis of TET3 in breast cancer. We found that TET3 localized to the nucleoplasm, vesicles, and cytosol in the MCF-7 cell line, and TET3 expression was significantly upregulated in breast cancer tissues compared to para-tumor tissues. Our findings indicate that ncRNA-mediated overexpression of TET3 predicts an unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer.

8.
Bioengineering (Basel) ; 11(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247958

RESUMO

Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.

9.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993693

RESUMO

Genome-wide association analysis (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified non-coding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G protein-coupled inwardly-rectifying potassium channel that regulates neuronal excitability. How changes in GIRK2 affect human neuronal excitability and the response to repeated ethanol exposure is poorly understood. Here, we studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multi-electrode-arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 days of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-dependent changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons. SIGNIFICANCE STATEMENT: Alcohol use disorder (AUD) is a major health problem that has worsened since COVID, affecting over 100 million people worldwide. While it is known that heritability contributes to AUD, specific genes and their role in neuronal function remain poorly understood, especially in humans. In the current manuscript, we focused on the inwardly-rectifying potassium channel GIRK2, which has been identified in an AUD-endophenotype genome-wide association study. We used human excitatory neurons derived from healthy donors to study the impact of GIRK2 expression. Our results reveal that elevated GIRK2 counteracts ethanol-induced increases in glutamate response and intracellular calcium, as well as deficits in activity-dependent mitochondrial respiration. The role of GIRK2 in mitigating ethanol-induced hyper-glutamatergic and mitochondrial offers therapeutic promise for treating AUD.

10.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836859

RESUMO

Optical cameras equipped with an underwater scooter can perform efficient shallow marine mapping. In this paper, an underwater image stitching method is proposed for detailed large scene awareness based on a scooter-borne camera, including preprocessing, image registration and post-processing. An underwater image enhancement algorithm based on the inherent underwater optical attenuation characteristics and dark channel prior algorithm is presented to improve underwater feature matching. Furthermore, an optimal seam algorithm is utilized to generate a shape-preserving seam-line in the superpixel-restricted area. The experimental results show the effectiveness of the proposed method for different underwater environments and the ability to generate natural underwater mosaics with few artifacts or visible seams.

11.
J Assist Reprod Genet ; 40(10): 2485-2492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574497

RESUMO

PURPOSE: To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS: A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS: Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS: Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Gravidez , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Sêmen , Espermatozoides , Infertilidade Masculina/genética , Mutação/genética , Dineínas do Axonema/genética
12.
BMC Cancer ; 23(1): 816, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653504

RESUMO

BACKGROUND: This network meta-analysis aimed to assess the comparative efficacy and safety of combinations involving three cyclin-dependent kinase 4/6 (CDK4/6) inhibitors and endocrine therapies (ETs) in patients with metastatic or advanced breast cancer (BC) who are hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-). METHODS: We initially identified relevant studies from previous meta-analyses and then conducted a comprehensive search of PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases to locate additional studies published between February 2020 and September 2021. Essential data were extracted, and a network meta-analysis was performed using R 4.1.1 software with a random-effects model. Furthermore, we assigned rankings to all available treatment combinations by calculating their cumulative probability. RESULTS: Data analysis included ten reports from nine studies. Pooled results demonstrated that each treatment combination significantly reduced the hazard risk of progression-free survival (PFS) compared to treatment with an aromatase inhibitor (AI) or fulvestrant alone. However, there were no differences observed in PFS or overall survival (OS) among the different treatment combinations. Additionally, patients receiving palbociclib plus AI and abemaciclib plus AI or fulvestrant experienced more severe adverse events (AEs), with hazard ratios (HRs) of 10.83 (95% confidence interval [CI] = 2.3 to 52.51) and 4.8 (95%CI = 1.41 to 16.21), respectively. The HR for ribociclib plus AI was 9.45 (95%CI = 2.02 to 43.61), and the HR for palbociclib plus fulvestrant was 6.33 (95%CI = 1.03 to 39.86). Based on the ranking probabilities, palbociclib plus fulvestrant had the highest probability of achieving superior PFS (37.65%), followed by abemaciclib plus fulvestrant (28.76%). For OS, ribociclib plus fulvestrant ranked first (34.11%), with abemaciclib plus fulvestrant in second place (25.75%). In terms of safety, palbociclib plus AI (53.98%) or fulvestrant (51.37%) had the highest probabilities of being associated with adverse events. CONCLUSIONS: Abemaciclib plus fulvestrant or ribociclib plus AI appear to be effective and relatively safe for the treatment of HR+/HER2- metastatic or advanced BC patients. However, given the reliance on limited evidence, our findings require further validation through additional studies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fulvestranto , Metanálise em Rede , Inibidores da Aromatase , Quinase 4 Dependente de Ciclina
13.
Mol Divers ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523101

RESUMO

Acute pancreatitis (AP) is an acute inflammatory gastrointestinal disease, the mortality and morbility of which has been on the increase in the past years. Spermidine, a natural polyamine, has a wide range of pharmacological effects including anti-inflammation, antioxidation, anti-aging, and anti-tumorigenic. This study aimed to investigate the reliable targets and molecular mechanisms of spermidine in treating AP. By employing computational biology methods including network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we explored the potential targets of spermidine in improving AP with dietary supplementation. The computational biology results revealed that spermidine had high degrees (degree: 18, betweenness: 38.91; degree: 18, betweenness: 206.41) and stable binding free energy (ΔGbind: - 12.81 ± 0.55 kcal/mol, - 15.00 ± 1.00 kcal/mol) with acetylcholinesterase (AchE) and serotonin transporter (5-HTT). Experimental validation demonstrates that spermidine treatment could reduce the necrosis and AchE activity in pancreatic acinar cells. Cellular thermal shift assay (CETSA) results revealed that spermidine could bind to and stabilize the 5-HTT protein in acinar cells. Moreover, spermidine treatment impeded the rise of the expression of 5-HTT in pancreatic tissues of caerulein induced acute pancreatitis mice. In conclusion, serotonin transporter might be a reliable target of spermidine in treating AP. This study provides new idea for the exploration of potential targets of natural compounds.

15.
ACS Appl Mater Interfaces ; 15(27): 32561-32568, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368844

RESUMO

In this work, square nanopore arrays were developed on the surface of ß-Ga2O3 microflakes using focused ion beam (FIB) etching, and solar-blind photodetectors (PDs) were fabricated based on the ß-Ga2O3 microflakes with square nanopore arrays. The ß-Ga2O3 microflake-based device was transformed from a gate voltage depletion mode to an oxygen depletion mode by FIB etching. The developed device exhibited excellent solar-blind PD performance with extremely high responsivity (1.8 × 105 at 10 V), detectivity (3.4 × 1018 Jones at 10 V), and light-to-dark ratio (9.3 × 108 at 5 V) as well as good repeatability and excellent stability. The intrinsic mechanism responsible for this performance was then systematically discussed. This work opens up a new avenue for the fabrication of high-performance ß-Ga2O3-based low-dimensional PDs with high reproducibility by employing the FIB etching process.

16.
RSC Adv ; 13(20): 13971-13984, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37181515

RESUMO

Pancreatic cancer is one of the most aggressive tumors and also has a low survival rate. The dried spines of Gleditsia sinensis Lam are known as "Gleditsiae Spina" and they mostly contain flavonoids, phenolic acids, terpenoids, steroids, and other chemical components. In this study, the potential active components and molecular mechanisms of Gleditsiae Spina for treating pancreatic cancer were systematically revealed by network pharmacology, molecular docking and molecular dynamics simulations (MDs). RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), tumor necrosis factor α (TNFα), interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) were common targets of Gleditsiae Spina, human cytomegalovirus infection signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and MAPK signaling pathway were critical pathways of fisetin, eriodyctiol, kaempferol and quercetin in the treatment of pancreatic cancer. Molecular dynamics simulations (MDs) results showed that eriodyctiol and kaempferol have long-term stable hydrogen bonds and high binding free energy for TP53 (-23.64 ± 0.03 kcal mol-1 and -30.54 ± 0.02 kcal mol-1, respectively). Collectively, our findings identify active components and potential targets in Gleditsiae Spina for the treatment of pancreatic cancer, which may help to explore leading compounds and potential drugs for pancreatic cancer.

17.
Appl Microbiol Biotechnol ; 107(13): 4355-4368, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209162

RESUMO

As common mental disorders, depression and anxiety impact people all around the world. Recent studies have found that the gut microbiome plays an important role in mental health. It is becoming possible to treat mental disorders by regulating the composition of the gut microbiota. Bacillus licheniformis is a probiotic used to treat gut diseases through balancing the gut microbiome during lasting years. Considering the role of gut microbiota in the gut-brain axis, this study used chronic unpredictable mild stress (CUMS) model rats to explore whether Bacillus licheniformis can prevent and treat depression and anxiety. We found that B. licheniformis reduced the depressive-like and anxiety-like behaviours of the rats during the CUMS process. Meanwhile, B. licheniformis changed the gut microbiota composition; increased the short chain fatty acids (SCFAs) in the colon, decreased kynurenine, norepinephrine, and glutamate levels; and increased the tryptophan, dopamine, epinephrine, and γ-aminobutyric acid (GABA) in the brain. After correlation analysis, we found Parabacteroides, Anaerostipes, Ruminococcus-2, and Blautia showed significant correlation with neurotransmitters and SCFAs, indicating the gut microbiome plays an important role in B. licheniformis reducing depressive-like behaviours. Therefore, this study suggested B. licheniformis may prevent depressive-like and anxiety-like behaviours while regulating the gut microbiota composition and increasing the SCFA levels in the colon to alter the levels of the neurotransmitters in the brain. KEY POINTS: • B. licheniformis reduced depressive-like and anxiety-like behaviours induced by the chronic unpredictable mild stress. • GABA levels in the brain are assonated with B. licheniformis regulating depressive-like and anxiety-like behaviours. • Gut microbiota composition alteration followed by metabolic changes may play a role in the GABA levels increase.


Assuntos
Bacillus licheniformis , Depressão , Ratos , Animais , Depressão/prevenção & controle , Depressão/metabolismo , Comportamento Animal/fisiologia , Ansiedade/prevenção & controle , Ansiedade/metabolismo , Neurotransmissores
18.
Hum Reprod ; 38(6): 1213-1223, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004249

RESUMO

STUDY QUESTION: Does a homozygous nonsense mutation in ACR lead to total fertilization failure (TFF) resulting in male infertility in humans? SUMMARY ANSWER: A novel homozygous nonsense mutation of ACR (c.167G>A, p.Trp56X) was identified in two infertile brothers and shown to cause human TFF. WHAT IS KNOWN ALREADY: ACROSIN, encoded by ACR, is a major acrosomal enzyme expressed only in the acrosome of the sperm head. Inhibition of acrosin prevents sperm penetration of the zona pellucida (ZP) in several species, including humans. Acr-knockout in hamsters causes male infertility with completely blocked fertilization. Of note, there are no reports of ACR mutations associated with TFF in humans. STUDY DESIGN, SIZE, DURATION: Whole-exome sequencing (WES) was used for the identification of pathogenic genes for male factor TFF in eight involved couples. PARTICIPANTS/MATERIALS, SETTING, METHODS: Data from eight infertile couples who had experienced TFF during their IVF or ICSI attempts were collected. Functional assays were used to verify the pathogenicity of the potential genetic factors identified by WES. Subzonal insemination (SUZI) and IVF assays were performed to determine the exact pathogenesis of TFF caused by deficiencies in ACROSIN. MAIN RESULTS AND THE ROLE OF CHANCE: A novel homozygous nonsense mutation in ACR, c.167G>A, p.Trp56X, was identified in two additional primary infertile brothers whose parents were first cousins. This rare mutation caused ACROSIN deficiency and acrosomal ultrastructural defects in the affected sperm. Spermatozoa lacking ACROSIN were unable to penetrate the ZP, rather than hampering sperm binding, disrupting gamete fusion, or preventing oocyte activation. These findings were supported by the fertilization success of SUZI and ICSI attempts, as well as the normal expression of ACTL7A and PLCζ in the mutant sperm, suggesting that ICSI without remedial assisted oocyte activation is an optimal treatment for ARCOSIN-deficient TFF. LIMITATIONS, REASONS FOR CAUTION: The absence of another independent pedigree to support our argument is a limitation of this study. WIDER IMPLICATIONS OF THE FINDINGS: The findings expand our understanding of the genes involved in human TFF, providing information for appropriate genetic counseling and fertility guidance for these patients. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (grant no. 82201803, 81901541, 82271639, and 32000584), University Synergy Innovation Program of Anhui Province (GXXT-2019-044), and the Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (grant no. 2019PT310002). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Acrosina , Infertilidade Masculina , Animais , Cricetinae , Humanos , Masculino , Acrosina/genética , Acrosina/metabolismo , Zona Pelúcida/metabolismo , Códon sem Sentido/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Interações Espermatozoide-Óvulo/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
19.
Cell Death Dis ; 14(2): 127, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792588

RESUMO

The axonemal dynein arms (outer (ODA) and inner dynein arms (IDAs)) are multiprotein structures organized by light, intermediate, light intermediate (LIC), and heavy chain proteins. They hydrolyze ATP to promote ciliary and flagellar movement. Till now, a variety of dynein protein deficiencies have been linked with asthenospermia (ASZ), highlighting the significance of these structures in human sperm motility. Herein, we detected bi-allelic DNALI1 mutations [c.663_666del (p.Glu221fs)], in an ASZ patient, which resulted in the complete loss of the DNALI1 in the patient's sperm. We identified loss of sperm DNAH1 and DNAH7 rather than DNAH10 in both DNALI1663_666del patient and Dnali1-/- mice, demonstrating that mammalian DNALI1 is a LIC protein of a partial IDA subspecies. More importantly, we revealed that DNALI1 loss contributed to asymmetries in the most fibrous sheath (FS) of the sperm flagellum in both species. Immunoprecipitation revealed that DNALI1 might interact with the cytoplasmic dynein complex proteins in the testes. Furthermore, DNALI1 loss severely disrupted the transport and assembly of the FS proteins, especially AKAP3 and AKAP4, during flagellogenesis. Hence, DNALI1 may possess a non-classical molecular function, whereby it regulates the cytoplasmic dynein complex that assembles the flagella. We conclude that a DNALI deficiency-induced IDAs injury and an asymmetric FS-driven tail rigid structure alteration may simultaneously cause flagellum immotility. Finally, intracytoplasmic sperm injection (ICSI) can effectively resolve patient infertility. Collectively, we demonstrate that DNALI1 is a newly causative gene for AZS in both humans and mice, which possesses multiple crucial roles in modulating flagellar assembly and motility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/metabolismo , Astenozoospermia/genética , Astenozoospermia/complicações , Astenozoospermia/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mamíferos , Mutação , Proteínas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo
20.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824752

RESUMO

Background: Genetic and experimental evidence strongly implicates myeloid cells in the etiology of AD and suggests that AD-associated alleles and genes may modulate disease risk by altering the transcriptional and cellular responses of macrophages (like microglia) to damage of lipid-rich tissues (like the brain). Specifically, recent single-cell/nucleus RNA sequencing (sc/nRNA-seq) studies identified a transcriptionally distinct state of subsets of macrophages in aging or degenerating brains (usually referred to as disease-associated microglia or DAM) and in other diseased lipid-rich tissues (e.g., obese adipose tissue, fatty liver, and atherosclerotic plaques). We collectively refer to these subpopulations as lipid-associated macrophages or LAMs. Importantly, this particular activation state is characterized by increased expression of genes involved in the phagocytic clearance of lipid-rich cellular debris (efferocytosis), including several AD risk genes. Methods: We used sc/nRNA-seq data from human and mouse microglia from healthy and diseased brains and macrophages from other lipid-rich tissues to reconstruct gene regulatory networks and identify transcriptional regulators whose regulons are enriched for LAM response genes (LAM TFs) across species. We then used gene knock-down/knock-out strategies to validate some of these LAM TFs in human THP-1 macrophages and iPSC-derived microglia in vitro, as well as mouse microglia in vivo. Results: We nominate 11 strong candidate LAM TFs shared across human and mouse networks (BHLHE41, HIF1A, ID2, JUNB, MAF, MAFB, MEF2A, MEF2C, NACA, POU2F2 and SPI1). We also demonstrate a strong enrichment of AD risk alleles in the cistrome of BHLHE41 (and its close homolog BHLHE40), thus implicating its regulon in the modulation of disease susceptibility. Loss or reduction of BHLHE40/41 expression in human THP-1 macrophages and iPSC-derived microglia, as well as loss of Bhlhe40/41 in mouse microglia led to increased expression of LAM response genes, specifically those involved in cholesterol clearance and lysosomal processing, with a concomitant increase in cholesterol efflux and storage, as well as lysosomal mass and degradative capacity. Conclusions: Taken together, this study nominates transcriptional regulators of the LAM response, experimentally validates BHLHE40/41 in human and mouse macrophages/microglia, and provides novel targets for therapeutic modulation of macrophage/microglia function in AD and other disorders of lipid-rich tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...